马万里教授课题组、Steffen Duhm教授课题组与瑞士洛桑联邦理工学院Michael Grätzel教授课题组合作在 Advanced Materials上发表论文





Guanidinium-Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics


Xufeng Ling,1 Jianyu Yuan,*1 Xuliang Zhang,1 Yuli Qian,1 Shaik M. Zakeeruddin,2 Bryon W. Larson,3 Qian Zhao,3 Junwei Shi,1 Jiacheng Yang,1 Kang Ji,1 Yannan Zhang,1 Yongjie Wang,1 Chunyang Zhang,2 Steffen Duhm,*1 Joseph M. Luther,3 Michael Grätzel,*2 and Wanli Ma*1


1Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for  Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China

2Laboratory of Photonics and Interfaces (LPI), Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL), Station 6, Lausanne CH-1015, Switzerland

3Chemistry & Nanoscience Center National Renewable Energy Laboratory, Golden, CO 80401, USA


Metal halide perovskite quantum dots (Pe-QDs) are of great interest in new-generation photovoltaics (PVs). However, it remains challenging in the construction of conductive and intact Pe-QD films to maximize their functionality. Herein, a ligand-assisted surface matrix strategy to engineer the surface and packing states of Pe-QD solids is demonstrated by a mild thermal annealing treatment after ligand exchange processing (referred to as “LE-TA”) triggered by guanidinium thiocyanate. The “LE-TA” method induces the formation of surface matrix on CsPbI3 QDs, which is dominated by the cationic guanidinium (GA+) rather than the SCN-, maintaining the intact cubic structure and facilitating interparticle electrical interaction of QD solids. Consequently, the GA-matrix-confined CsPbI3 QDs exhibit remarkably enhanced charge mobility and carrier diffusion length compared to control ones, leading to a champion power conversion efficiency of 15.21% when assembled in PVs, which is one of the highest among all Pe-QD solar cells. Additionally, the “LE-TA” method shows similar effects when applied to other Pe-QD PV systems like CsPbBr3 and FAPbI3 (FA = formamidinium), indicating its versatility in regulating the surfaces of various Pe-QDs. This work may afford new guidelines to construct electrically conductive and structurally intact Pe-QD solids for efficient optoelectronic devices.








电子游戏平台官网-uedbet赫塔菲官网 345188cc新时代赌城-uedbet赫塔菲官网 威尼斯人app-uedbet赫塔菲官网 bet亚洲官方网站-uedbet赫塔菲官网 188金宝搏官网下载-uedbet赫塔菲官网 金沙澳门登录入口-uedbet赫塔菲官网 365bet手机版网址-uedbet赫塔菲官网 永利博-uedbet赫塔菲官网 宝马娱乐官网手机版-uedbet赫塔菲官网 澳门威尼斯app下载-uedbet赫塔菲官网 龙8游戏官方网站-uedbet赫塔菲官网 81818威尼斯-uedbet赫塔菲官网 威尼斯平台登录-uedbet赫塔菲官网 宝马在线1211com-uedbet赫塔菲官网 betway必威中文官网-uedbet赫塔菲官网 千赢手机app下载官网-uedbet赫塔菲官网 澳门威尼斯人app下载-uedbet赫塔菲官网 新澳门葡萄京2077-uedbet赫塔菲官网 澳门新葡350vip最新网站-uedbet赫塔菲官网 新葡的京集团3522vip-uedbet赫塔菲官网